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 Abstract: The study of spectral properties, in particular bound states, of 

multiparticle operators of quantum mechanics and solid state physics is closely 

related to the problem of solving integral equations with partial integrals (partial 

integral equations) for functions of three variables. In this article, we study the 

question of the existence and uniqueness of the solution of a linear partial integral 

equation for functions of three variables with degenerate kernels and many 

parameters in a complex Hilbert space. It is proved that under natural conditions, 

equation (1) has a unique solution, which is expressed through the data and their 

integrals of the considered equation. The general view of the solution is found. 

When solving the partial integral equation under study, the Fredholm method was 

developed for solving a linear integral equation of the second kind with a 

parameter. 
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INTRODUCTION 

Functional equations have occupied an important place in the work of 

mathematicians for a long time. Recently, the attention of mathematicians has been 

especially directed to a special type of functional equations, the so-called integral 

equations, i.e. such equations in which the unknown function appears under the 

integral sign. The solution of an equation of this kind is sometimes interpreted as 
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the inverse of a definite integral. The study of spectral properties, in particular 

bound states, of many-particle operators of quantum mechanics and solid state 

physics is closely related to the problem of solving partial-integral equations for 

functions of three variables. For example, the problem for the equation of 

eigenfunctions of the four-particle Schrödinger operator with pair interactions [1] 

leads to the solution of integral equations with partial integrals for functions of 

three variables. The question of the existence of a solution to an integral equation 

with partial integrals for functions of two variables was considered in the works of 

Abdus Salam [2] and others, and for functions of three variables in [3-6], and in 

connection with the study of the spectral properties of many-particle operators was 

studied in books by S.P. Merkuriev, L.D. Faddeev [7], S. Albeverio., F. Gestesi, Z. 

Heeg-Kron, H. Holden [8] and in the works of S.N. Lakaev [9-10]. The aim of this 

work is to study the solvability of partially integral equations for functions of three 

variables in the complex Hilbert space L2 ([a, b] 3). 

   

MATERIALS AND METHODS 

Research methodology. In the proof of the existence and uniqueness of the 

solution of a partial integral equation with degenerate kernels and many parameters 

for functions of three variables, methods of the theory of integral equations, 

methods of the theory of functions and functional analysis are used. 

Problem statement and formulation of the main result. In a complex 

Hilbert space ],[],[],[),(2 bababaDDL =   consider a linear partial integral equation 

for functions of three variables with degenerate kernels and many parameters of 

the form  
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.dt)t,y,x()t()x(dt)z,t,x()t()x(
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22  ++                      (2) 

Here functions 3,2,1i,i = belong to space ])b,a([L2 and satisfy the conditions: 

( ) ;3,2,1j,i,, ijji ==  free function f is an element of )D(L2 ,  ,  and   numeric 

parameters,  - the required function from )D(L2 . 

Theorem. Let 1,1,1,1,1,1 +++   and 1++  .  Then: 

a) equation (1) for any f has a unique solution expressed by the formula 
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Where C  - is expressed through  ,  and  ; 

b) The homogeneous equation (2) has only a trivial solution.  

Proof of the theorem. Let us introduce the following notation: 
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Then equation (1) takes the form  
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Substitute expression (4) into system (3): 
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To solve system (5), we first give an idea for a solution. It is enough to obtain 

some Fredholm integral equation of the second kind, with respect to 

some 3,2,1, =ii , for example, with respect to 3 . For this purpose, it is sufficient to 

solve the partially integral equation for ),(3 yx , i.e. the function must be expressed 

through the integrals f and 3,2,1, =ii . Partially we arrive at the integral equation 3   

with respect to the following way: ),(1 zy  and ),(2 zx  express through ),(3 yx , 

and for this we find 1 from the first equation of system (5) and substitute it into 

the second equation. As a result, we obtain a partially integral equation for 2 . 

Solving the resulting equation, we find 2 , i.e. we express it through the integrals f, 

3,2,1, =ii  and 3 . Then, using the found expression 2 , we find the function 

1 which is also expressed through the integrals f,  3,2,1, =ii  and 3 . Further, 

substituting the found expressions 1 and 2  into the third equation of system (5), 

we obtain the required partial integral equation with respect to 3 . And the last 

equation is reduced to the solution of some Fredholm integral equation of the 

second kind with a degenerate kernel. It is known that the Fredholm integral 

equation of the second kind can be solved explicitly under certain conditions. 

Thus, we define 3  through the integrals f, 3,2,1, =ii . Therefore, we obtain 

expressions for 1  and 2 through the integrals f , 3,2,1, =ii , finally.  
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Now let's start solving system (5). From the first equation of system (5) we 

find ),(1 zy : 
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Substituting expression (6) into the second equation of system (5), with 1  

taking into account the condition, we arrive at ( ) 1, 22 =  a partially integral 

equation for the following 2  form: 
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We solve equation (7). 
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For almost all ],[ baz , taking into account the expression (8) of the function F, we 

finally obtain the expression for 2  in the form 
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Using (9) instead of (6), we write the following: 
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Further, the found expressions of the functions 1  and 2 from (10) and (9) are 

substituted into the third equation of system (5) and taking into account the 

condition ( ) 1, 33 = , at 1  we arrive at a partially integral equation with respect 

to 3 : 
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for every fixed value of the variable x. Taking into account (14), we arrive at the 

complete Fredholm integral equation of the second kind with respect to 3 : 
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The Fredholm determinant corresponding to the kernel of the integral equation (15) 
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Further, substituting (17) into (9) and (10), we have: 
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   +
−−−

+
−

=

b

a

b

a

b

a

dsdtzstfst
x

dszsxfszx ),,()()(
)1)(1(

)(
),,()(

1

1
),( 21

1
22 







  

+
−−−

+   dsdtusxfus
z

b

a

b

a

),,()()(
)1)(1(

)(
32

3 



 

         dtdsduustfustzxC

b

a

b

a

b

a

),,()()()()()( 3213113   +   ,                                   (18) 

Where 
)1)(1)(1)(1(

)]2()1)(1)(1([ 12
13





−−−−−−

−−+−−−−
=

C
C ; 

 

 +
−

=

b

a

dtzytftzy ),,()(
1

1
),( 11 


 +

−−−   dsdtzstfst
y

b

a

b

a

),,()()(
)1)(1(

)(
21

2 



     

+
−−−

+   dudtuytfut
z

b

a

b

a

),,()()(
)1)(1(

)(
31

3 



                                         (19) 

dtdsduustfustzyC

b

a

b

a

b

a

),,()()()()()( 3213223   +  ,        in which  

)1)(1)(1)(1(

)]1()2()21)(1([ 12
23





−−−−−−

−−+−−−++−−−−
=

C
C . 

Thus, in expressions (19), (18) and (17), respectively, functions 1 , 2  and 3 ,the 

solution of system (5) is determined. Substituting these expressions in (4), we 

obtain a solution to equation (1) expressed by formula (1.1). From the uniqueness, 

1 , 2 and  3  the uniqueness of the function of equation (1) follows.  Part a) of the 

theorem is proved. The proof of part b) follows from the proof of part a). 

          CONCLUSION 

Partially integral equations for functions of three variables have not been 

studied well enough earlier. In a complex Hilbert space )]b,a([L
3

2 , the solvability 

of a partial integral equation for functions of three variables with degenerate 

kernels and many parameters and the corresponding homogeneous equation is 

studied. In the following papers, we present the results of a complete study of the 

homogeneous equation (2) for all possible values of the parameters and the 
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description of the solution space, as well as the necessary and sufficient conditions 

for the existence of a solution to equations (1) and (2). 

REFERENCES: 

[1]. S.Albeverio, S.N. Lakaev, Zh.I. Abdullaev, The finiteness of the discrete 

spectrum of a four-particle operator on a lattice. Functional analysis and its 

applications. 36 (2002), no. 3, 56-60.  

[2]. Abdus Salam, Fredholm Solution of Partial Integral Equations.oc. Cambridge 

Philos.Soc. 49 (1952), 213-217.  

[3]. Lakaev SN, Soatov UA On the solution of a certain linear integral equation 

with partial integrals, Collection of articles. abstracts scientific conf. dedicated 

75th anniversary of Tashkent State University, Tashkent, 1995. p. 165.  

[4]. Soatov UA, On the solution of a certain linear integral equation with partial 

integrals. Uzbek Mathematical Journal, Tashkent, 1997, No. 2, pp. 72-79.  

[5]. Lakaev S.N., Soatov U., Solition of partial integral equations for three variable 

functions, ICSTM-96, Samarkand, 1996, p. 62.  

[6]. Lakaev SN, Soatov UA On the solution of a partial integral equation for 

functions of three variables, Dokl. AN RUz, Tashkent, 1997, No. 11, p. 8-10.  

[7]. Merkuriev S.P., Faddeev L.D. "Quantum scattering theory for systems several 

particles ". Moscow," Science ", 1985.  

[8]. Albeverio S., Gestesi F., Heeg-Kron Z., Holden H. Solvable models in 

quantum mechanics. Moscow, Mir. 1991.  

[9]. Lakaev S.N. On an infinite number of three-particle bound states systems of 

three quantum lattice particles. Theoretical and Mathematical Physics, 89 (1991), 

No. 1, pp. 94-104.  

[10]. Lakaev S.N. On the Efimov effect in a system of three identical quantum 

particles. Functional analysis and its applications, 27 (1993), issue 3, pp. 15-28. 

 

 

 


